Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei-Bing Zhang, Jia-Guo Wang, Han-Xiang Chen and Hong-Ping Xiao*

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.054$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Chlorobis(1,10-phenanthroline)copper(II) 2-carboxybenzenesulfonate monohydrate

In the title compound, $\left[\mathrm{CuCl}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{5} \mathrm{~S}\right) \cdot \mathrm{H}_{2} \mathrm{O}$, copper(II) is coordinated by four N atoms and one chloride anion in a distorted trigonal-bipyramidal geometry. The $\mathrm{Cu}-$ N bond lengths are in the range 1.992 (3)-2.121 (3) A , while the $\mathrm{Cu}-\mathrm{Cl}$ distance is 2.3046 (11) \AA.

Comment

In continuation of our study of the chemistry of carboxybenzenesulfonate ligands (Fan et al., 2004; Li \& Yang, 2004; Xiao, 2005; Xiao, Li \& Hu, 2005; Xiao, Shi \& Cheng, 2005; Zhang et al., 2005), we present here the crystal structure of the title compound, $\left[\mathrm{CuCl}(\text { phen })_{2}\right](o-s b) \cdot \mathrm{H}_{2} \mathrm{O}$ (phen is $1,10-$ phenanthroline; o-sb is 2-carboxybenzenesulfonate).

(I)

The title compound, (I), consists of a $\left[\mathrm{CuCl}(\mathrm{phen})_{2}\right]^{+}$cation, a 2-carboxybenzenesulfonate anion and one water molecules (Fig. 1). The coordination geometry of the Cu atom is best described as distorted trigonal bipyramidal, made up of four N atoms of two 1,10-phenanthroline molecules and one chloride anion. The $\mathrm{Cu}-\mathrm{N}$ bond lengths are in the range 1.992 (3)2.121 (3) \AA, while the $\mathrm{Cu}-\mathrm{Cl}$ bond distance is 2.3046 (11) \AA (Table 1). The 2-carboxybenzenesulfonate anion does not coordinate to the Cu atom, but simply balances the charge. The dihedral angle between the two phen ligands in (I) [59.60 (1) $)^{\circ}$] is much smaller than that $\left[70.50(2)^{\circ}\right.$] observed in $\left[\mathrm{CuCl}(\text { phen })_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{6}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Ye et al., 2004).

The relatively short interplanar distances of 3.662 (2) \AA between the 1,10-phenanthroline ring systems of neighbouring cations indicate a possible weak $\pi-\pi$ stacking interaction. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link two 2-carboxybenzenesulfonate anions and two water molecules into a cluster. The crystal packing (Fig. 2) is additionally stabilized by van der Waals forces.

Experimental

An aqueous solution (15 ml) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.852 \mathrm{~g})$ was added slowly to a mixed solution (10 ml) of ethanol containing 1,10phenanthroline $(0.5 \mathrm{mmol}, \quad 0991 \mathrm{~g})$ and 2 -sulfobenzoic acid $(0.5 \mathrm{mmol}, 0.101 \mathrm{~g})$. The mixture was left to stand at room temperature for about two weeks to afford green crystals.

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{5} \mathrm{~S}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=678.58$
Triclinic, $P \overline{1}$
$a=8.0807(10) \AA$
$b=13.2419$ (16) A
$c=14.5790$ (18) \AA
$\alpha=68.321(2)^{\circ}$
$\beta=83.256(2)^{\circ}$
$\gamma=78.163(2)^{\circ}$
$V=1417.4(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.590 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3297 \\
& \quad \text { reflections } \\
& \theta=2.6-25.1^{\circ} \\
& \mu=0.99 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, green } \\
& 0.22 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.811, T_{\text {max }}=0.857$
10971 measured reflections

Refinement

Refinement on F^{2}

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.05 P)^{2}\right.$
$+1.3918 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 3$	$1.992(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.121(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.994(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.3046(11)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$2.103(3)$		
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$174.43(12)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$115.55(11)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 4$	$80.79(11)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1$	$92.81(9)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$96.36(12)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{C} 11$	$92.74(9)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$96.22(11)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{Cl} 1$	$124.40(8)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$80.63(11)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$120.04(8)$

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{3}$	0.82	1.90	$2.684(3)$	161
O6 $^{\mathrm{H}} 6 A \cdots 5^{\mathrm{ii}}$	$0.87(2)$	$2.00(3)$	$2.823(4)$	$156(4)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x-1, y, z+1$.
The water H atoms were located and refined with distance restraints $\left[\mathrm{O}-\mathrm{H}=0.85(2) \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$. All other H atoms were included in the refinement in calculated positions in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \quad U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{O}-\mathrm{H}=0.82 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figure 1
View of (I), showing the atom numbering and displacement ellipsoids at the 30% probability level.

Crystal packing, viewed approximately along the a axis. The intermolecular hydrogen bonds are shown by dashed lines.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1970-m1972.
Li, X.-H. \& Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiao, H.-P. (2005). Acta Cryst. E61, m942-m944.
Xiao, H.-P., Li, X.-H. \& Hu, M.-L. (2005). Acta Cryst. E61, m506-m508.
Xiao, H.-P., Shi, Q. \& Cheng, Y.-Q. (2005). Acta Cryst. E61, m907-m909.
Ye, M.-D., Xiao, H.-P. \& Hu, M.-L. (2004). Acta Cryst. E60, m1516-m1518.
Zhang, L.-P., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. E61, m860-m862.

